El proyecto "Environmental design of low crested coastal defense structures" (DELOS, EVK3-CT-2000-00041), financiado por la Unión Europea dentro del VI programa Marco se desarrolló durante el periodo 2003-2005. El proyecto estuvo formado por un consorcio de 18 instituciones académicas y de investigación de 7 paises de la Unión Europea, liderados por la Universidad de Bolonia (Italia).

El objetivo del proyecto fue desarrollar metodologías de diseño integrales, efectivas y medioambientalmente sostenibles para las estructuras de baja coronación (LCS, low crested structures), para defender la costa europea ante la erosión con el objetivo de preservar los ecosistemas litorales y el desarrollo económico sostenible de la costa.

Como objetivos principales estaban:

  1. Desarrollar inventarios de estructuras de baja coronación existentes en la costa, describiendo su estado e influencia en la costa y ecosistemas
  2. Analizar la hidrodinámica de las estructuras de baja coronación, su estabilidad y los efectos derivados de estas en la costa
  3. Investigar la biodiversidad existentes alrededor de las estructuras de baja coronación
  4. Desarrollar una metodología que permitiese cuantificar los beneficios de dichas estructuras de la costa basados en la gestión integral de la costa de acuerdo a la evaluación medioambiental de los diferentes países europea.

El trabajo de IH Cantabria en este proyecto estuvo centrado en la determinación de los parámetros funcionales y de la estabilidad de las estructuras, mediante la realización de ensayos innovadores en el laboratorio y la aplicación por primera vez del modelado numérico mediante modelos no integrados de Navier-Stokes, que inició el desarrollo del modelo IH-2VOF. El uso combinado del modelado físico y del laboratorio permitió caracterizar los procesos hidrodinámicos bidimensionales generados por el oleaje en el campo cercano de estructuras multicapa, sumergidas o de francobordo nulo. El modelo IH-2VOF fue validado a partir de medidas experimentales en laboratorio a pequeña y gran escala. Además, se realizó una caracterización del flujo turbulento generado por la rotura del oleaje sobre estructuras sumergidas y el inducido por éste dentro de los mantos porosos  llevándose a cabo un estudio, identificación y caracterización, de los procesos de reflexión y transmisión de la energía del oleaje, caudal de rebase, transformación del oleaje por rotura y posterior recomposición en la zona de trasdós del dique. Esto permitió realizar un estudio de la transformación de los parámetros espectrales asociados al oleaje irregular a partir de la rotura inducida sobre el dique además de parametrizar el flujo a través de los mantos porosos multicapa de estructuras sumergidas para cualquier condición de oleaje.

Published in R&D projects

We are very proud to announce a new edition of the IH2VOF and IHFOAM courses.

 

IH-2VOF is an extensively tested and validated 2DV RANS model which uses the VOF method. It can solve flow within porous media by means of the VARANS (Volume-Averaged RANS) equations. Wave generation including the most used theories is implemented for several procedures: Dirichlet boundary condition, moving boundary method (pyston-type wavemaker replication) or internal wave maker (mass source function). It features active and passive wave absorption. Passive wave absorption is defined by a dissipation zone, and was originally designed to work with the source function. Active wave absorption is a more recent advance, as it absorbs waves on the boundary (moving or not) without adding significant computational cost to the model. The model can obtain the VOF function, velocity and pressure fields and turbulent magnitudes k and epsilon in any cell. The specific tools designed for post-processing can aid the designer of coastal structures to check the stability and functionality. This includes, but is not restricted to, run-up, overtopping, transmitted energy or evolution of the forces, moments or safety factor coefficient on a structure.

 

The source code will be provided within a training course, which will cover the usage of IH-2VOF with a specially designed all-in-one GUI, guidelines for testing coastal structures, a great number of bechmark cases and post-processing tools.

 

IHFOAM, what makes it different from the rest of OpenFOAM solvers is a wide collection of boundary conditions which handle wave generation and active absorption at the boundaries, without the use of numerical damping areas. These specific boundary conditions allow generating any type of wave in a 3D domain, from the most simple regular waves (Stokes I, II and V, cnoidal, streamfunction...) to complex, real and fully 3D irregular (random) directional sea states. Active wave absorption has been programmed to work simultaneously with the wave generation to absorb any incident waves on the boundaries. These features do not increase the computational cost noticeably, and there is no need to extend the numerical domain, as it occurs with relaxation zones. Moreover, they allow for longer and more stable simulations without increasing water level or agitation. Currently the model can be applied to solve any impervious structures, both static and dynamic (floating structures). Some examples that have been simulated include: wave interaction with obstacles as vertical breakwaters, ships, offshore foundations, dam and spillway simulations, open channel flow, etc... Needless to say, a thorough validation with well-known laboratory tests has been carried out and is published in Coastal Engineering. The source code will be provided within a training course, which will cover the usage of IHFOAM with specially designed pre-processing and post-processing tools, guidelines for using the model in coastal and offshore applications and a great number of benchmark cases to solve along the course.

 

IHFOAM is a state-of-the-art 3D Navier Stokes solver for water waves. The training course covers from all the basics needed to learn to use OpenFOAM, to all sorts of advanced techniques, and tutorial cases not included in the materials released, namely:

 

- Residual monitoring
- Video rendering
- Runtime sampling
- Sampling with Paraview
- Dynamic mesh refinement
- Moving and deforming meshes
- Creating and compiling solvers/libraries/utilities

 

The combined use of IH2VOF and IHFOAM models has proven very convenient in order to save computational cost in 3D simulations. This methodology has been successfully applied in the following paper:

 

http://www.sciencedirect.com/science/article/pii/S0378383913001464
You can find more details about the models and the courses on the following websites:

 

http://ihcantabria.com/IH2VOF/

http://ihcantabria.com/IHFOAM/

 

The courses will be held at IH Cantabria headquarters in Santander (Spain):

 

- IH2VOF: 1 day training / October 6th 

- IHFOAM: 3,5 day training / October 7th – October 10th

 

Please be aware that the places are limited. Find deadline for registration at the website. Discount rates are available for academic institutions and when enrolling in both courses.

 

Participants are requested to bring their own laptops. For the IHFOAM course you must ensure that your pc is able to boot using a Live USB.

 

Published in News

We are very proud to announce a new edition of the IH2VOF training course, this time at Ferrovial Agroman UK Ltd headquarters at London, June 8th.

postproc wgIH-2VOF is an extensively tested and validated 2DV RANS model which uses the VOF method. It can solve flow within porous media by means of the VARANS (Volume-Averaged RANS) equations. Wave generation including the most used theories is implemented for several procedures: Dirichlet boundary condition, moving boundary method (pyston-type wavemaker replication) or internal wave maker (mass source function). It features active and passive wave absorption. Passive wave absorption is defined by a dissipation zone, and was originally designed to work with the source function. Active wave absorption is a more recent advance, as it absorbs waves on the boundary (moving or not) without adding significant computational cost to the model.

The model can obtain the VOF function, velocity and pressure fields and turbulent magnitudes k and epsilon in any cell. The specific tools designed for post-processing can aid the designer of coastal structures to check the stability and functionality. This includes, but is not restricted to, run-up, overtopping, transmitted energy or evolution of the forces, moments or safety factor coefficient on a structure.

The source code will be provided within a training course, which will cover the usage of IH-2VOF with a specially designed all-in-one GUI, guidelines for testing coastal structures, a great number of bechmark cases and post-processing tools.

You can find more details about IH2VOF and the course on its website: http://ihcantabria.com/IH2VOF/

The course will be held at Ferrovial Agroman UK Ltd headquarters, 10th Floor, BSI Building, 389 Chiswick High Road, London, June 8th.

Please be aware that the places are limited and the deadline for registration is June 1st.

Discount rates are available for academic institutions and when enrolling also in the IHFOAM (http://ihcantabria.com/IHFOAM/) training course between June 9th and 12th.

We look forward to seeing you in London.

Published in News
logo IH logo UC logo FIHC laj