IH-3VOF is a code developed by IH Cantabria to resolve the three-dimensional flows in Coastal Engineering, specifically regarding wave-structure interactions.  presa-cuad-VOF-4

IH-3VOF is a model which is able to study, with a purely tridimentional focus, problems regarding porous media such as jetties.  The model can be applied directly to conventional coastal structures such as jetties. The run up as well as the forces acting upon the structure can be evaluated under different dynamic conditions. The model can therefore be used as a laboratory to carry out different experiments and obtain formulations to correctly design specific structures. It can also be applied directly to the hydrodinamic study in the surf zone considering the porous properties of the beach slope. The tangent tensions at the beach bottom can be calculated very precisely while also allowing us to better understand the transport mechanisms involved.

IH3VOF is able to simulate the behaviour of fluids within th eporous media, while also generating all different types of waves, simulating all types of marine structures. The model has been validated with lab tests (del Jesus et al. 2012).

plataforma-VOF-velo.0495IH-3VOF solves the three-dimensional Navier-Stokes equations for transitional flows in two phases. The VOF technique, developed by Rider and Kothe (1998) is used to study the interphase between two fluids. IH-3VOF is designed to simulate all the  phenomena which are relevant to Coastal Engineering. 

The spatial discretization of IH-3VOF is carried out using the fionite volume method, with structured and non-structured grids. A two step frantionary method  (Chorin 1968) is used to solve the velocity and pressure fields. The FGMRES method is used to solve the resulting Poisson equation. To eliminate the spatial oscillations in the pressures and velocity, the Rhie-Chow interpolation method is used. The code can be run both in parallel and in series, allowing complex calculations to be solved very quickly. 

IH-3VOF is an immensely versatile model able to simulate correctly the behaviour of fluids in wave-structure interaction studies.

Selected Publications:

del Jesus, M., Lara J.L., Losada I.J (2012) Three-dimensional interaction of waves and porous coastal structures. Part I: Numerical model formulation. Coastal Engineering ELSEVIER. Vol 64, pp. 57-72.

Lara J.L., del Jesus, M., Losada I.J (2012) Three-dimensional interaction of waves and porous coastal structures.Part II: Experimental validation.
Coastal Engineering ELSEVIER. Vol 64, pp. 26-46.

López Lara, Javier; Guanche García, Yanira; Del Jesus Peñil, Manuel; Losada Rodríguez, Iñigo; Barajas Ojeda, Gabriel, Análisis numérico del flujo alrededor del morro de diques con un modelo 3-D de Navier-Stokes Título Congreso: XI Jornadas Españolas de Costas y Puertos.

López Lara, Javier; Higuera Caubilla, Pabl; Del Jesus Peñil, Manuel; Losada Rodríguez, Iñigo; Guanche García, Yanira; Barajas Ojeda, Gabriel, Numerical simulation of three dimensional breaking waves on a gravel slope using two-phase flow Navier-Stokes model. ACOMEN 2011. 5th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2011).

López Lara, Javier; Del Jesus Peñil, Manuel; Guanche García, Yanira; Losada Rodríguez, Íñigo; Barajas Ojeda, Gabriel, Surface water waves induced hydrodynamics around breakwater heads: 3D Navier-Stokes approach. Coastal Structures 2011.

López Lara, Javier; Del Jesus Peñil, Manuel; Guanche García, Yanira; Losada Rodríguez, Íñigo; Barajas Ojeda, Gabriel, Surface Water Waves Induced Hydrodynamics around Breakwater Heads. 3D Navier-Stokes Approach. MARINE 2011. IV International Conference on Computational methods in Marine Engineering.

Lara J. L., Losada I.J. del Jesus M., Barajas G. y Guanche R., IH-3VOF: A three dimensional Navier-Stokes model for wave and structure interaction.

Título del Congreso: Proceedings of the 32nd International Conference on Coastal Engineering. ASCE.

Javier L. Lara , Maria Maza, Pablo Higuera, Gabriel Barajas, Ínigo J. Losada, Numerical modelling of wave generation using a two phase model. Application to wave overtopping. ECCOMAS.

Published in Resources

 

 

IH2VOF solves the two-dimensional wave flow for hybrid domains in a coupled NS-type equation system, at the clear-fluid region (outside the porous media) and inside the porous media by the resolution of the Volume-Averaged Reynolds Averaged Navier-Stokes (VARANS) equations. Turbulence is modelled using a k-ε model for both the clear-fluid region and the porous media region.

IH2VOF is one of the most advanced RANS models thanks to its capabilities, robustness and extensive validation for both surf zone hydrodynamics and the stability and functionality of conventional or non-conventional coastal structures. Realistic wave generation, second order generation and active wave absorption are some of the unique features included in the model.

The model includes a Graphical User Interface with a mesh generator and pre-processing and post-processing tools.

IH2VOF has been used for consultancy work mainly focus on the design of both conventional and non-conventional coastal structures.

 

 

More information on IH2VOF can be found here.

Published in Resources

manolo1El modelo numérico MANOLO, acrónimo de Modelo Avanzado NO Lineal de Ondas que se ha desarrollado en el marco del convenio "Desarrollo de un modelo de propagación de oleaje y agitación portuaria de última generación cuyos derechos de explotación estén bajo control español".

Este desarrollo se puso en marcha en colaboración entre las Universidades de Cantabria y Cornell, los organismos públicos CEDEX, Puertos de Estado, Ports de la Generalitat y Dirección General de Costas, y las empresas privadas ALATEC, AZTI, INHA, HIDTMA, IBERINSA, INTECSA, SENER y PROINTEC, con el objetivo de desarrollar en España un modelo numérico de propagación del oleaje sobre una malla triangular no estructurada en elementos finitos, capaz de superar algunas de las limitaciones más importantes presentes en los modelos disponibles en el estado del arte.

Este modelo se basa originalmente en las ecuaciones modificadas débilmente no lineales y débilmente dispersivas de Boussinesq, Nwogu (1993); Woo & Liu (2004a), y Woo & Liu (2004b) y Losada et al. (2008).

manolo2Resuelve los patrones temporales de propagación de oleaje, transformación y agitación, dentro de dominios numéricos con contornos complejos, sobre batimetrías reales, a través de la utilización de mallas adaptativas en elementos finitos y resolviendo los patrones bidimensionales (2DH) de velocidades, presiones, y superficie libre, considerando los procesos de asomeramiento, refracción, difracción, reflexión y radiación.

Además, el modelo numérico incluye en su formulación los procesos de disipación de energía por absorción parcial o total de los contornos, procesos asociados a la rotura del oleaje, fricción por fondo y efectos turbulentos.

El modelo numérico MANOLO ha sido aplicado con éxito en diferentes proyectos, tales como:

  • Estudios de agitación en puertos reales
  • Prediseño y diseño portuario
  • Estudios de resonancia en puertos considerando la transferencia no lineal de energía entre frecuencias y los efectos de acoplamiento entre dársenas
  • Estudios de operatividad y gestión portuaria
  • Diseño del posicionamiento de estructuras provisionales de protección portuaria durante la etapa de construcción
  • Interacción oleaje-estructuras cilíndricas, muelles, y diques de talud vertical
  • Apoyo al diseño de modelos físicos en laboratorio
  • Modelación del oleaje en laboratorio numérico 2DH
  • Prediseño de campañas de medición de oleaje en campo
  • Estudios de control de calidad de datos medidos en laboratorio, y estudios vinculados a ondas largas (ondas de borde, ondas solitarias, tsunamis, grupos de onda, etc.).

Una de las ventajas fundamentales de utilización del modelo numérico MANOLO a estudios de agitación portuaria, se basa en las capacidades que tiene para resolver los patrones de oleaje sobre un dominio numérico con contornos complejos reales considerando una evolución temporal de dichos patrones, con la utilización de mallas adaptativas en elementos finitos, resolviendo las velocidades, presiones y superficie libre en el plano bidimensional.

Finalmente, debido a las ecuaciones de gobierno que utiliza, ofrece la posibilidad de considerar de manera inherente la interacción energética entre diferentes componentes frecuenciales del flujo (p. ej. onda larga y onda corta), considerando los efectos dispersivos, y los efectos no lineales que se derivan de la transformación e interacción entre dichas componentes energéticas, así como la interacción del flujo, el fondo y la estructura.

Publicaciones destacadas

Ramón Codina, José M. González-Ondina, Gabriel Díaz-Hernández, Javier Principe (2008). Finite element approximation of the modified Boussinesq equations using a stabilized formulation. International Journal for Numerical Methods in Fluids. Special Issue: 14th International Conference on Finite Elements in Flow Problems. Volume 57, Issue 9, pages 1249–1268.

Losada I J, Gonzalez-Ondina J M, Diaz-Hernandez G, (2008). Numerical modeling of nonlinear resonance of semi-enclosed water bodies: Description and experimental validation. Coast Eng, 2008, 55(1): 21–34.

L. Lara J., Losada I.J., Martin M., Diaz-Hernandez G. (2004). Experimental Analysis of long wave at harbour entrances. Coastal Engineering, 29th International Conference on Coastal Engineering.

Losada I.J., Liu P.L-F., Gonzalez E.M, Diaz-Hernandez G, González M (2004). Harbour short wave agitation and resonance based on modifies boussinesq equations. Coastal Engineering, 29th International Conference on Coastal Engineering.

S.-B. Woo, P.L-F. Liu, (2004) Finite-element model for modified Boussinesq equations. I: Model development, J Waterway, Port, Coastal Ocean Eng. 130 (1) 1–16.

S.-B. Woo, P.L-F. Liu, (2004) Finite-element model for modified Boussinesq equations II. Applications to Nonlinear Harbor Oscillations, J Waterway, Port, Coastal Ocean Eng. 130 (1) 1–16.

Losada I.J., Liu P.L-F., Gonzalez E.M. Martin F.L. (2001). Desarrollo de un modelo de propagación de oleaje y agitación portuaria de última generación cuyos derechos de explotación estén bajo control español. 1er Informe Anual. Universidad de Cantabria.

Nwogu, O. (1993). Alternative Form of Boussinesq Equations for Nearshore Wave Propagation. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119(6), 618-638

Published in Resources

Horus001

HORUS is a video-monitoring system created to contribute to the research and management of the environment. It is able to continuously measure changes in various natural areas, and offers large spatio-temporal resolution. IH Cantabria has installed the system in different parts of rivers, estuaries and coasts to study their evolution.

The video-monitoring is the product of IH Cantabria's experience in understanding the processes involved in the water cycle. Horus is a non-intrusive measurement method created to work "with" nature and not "against" it.

The  images generated are also useful for those people who use these elemets, as it allows the viewer to see the hydraulic and climatic conditions at that specific spot.

The Horus website provides images of the stations in near real time, general information and how these imagegs are used to research and manage the environment

www.horusvideo.com

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Published in Resources
IH Cantabria has an underwater remotely operated vehicle  (ROV) model "Triggerfish" house "Deep Ocean Engineering". It is a powerful, compact model, with capacity for underwater exploration upto 300 meters in depth, but also very versatile, as it can be handled by two operators from a small boat. The ROV moves with four propellers that give great mobility and has the following additional features:

Color video camera and zoom 10:1, mobility of ± 90 º

Lighting system consisting of two 150 W halogen spotlights c / u

Underwater acoustic positioning system

Depth gauge and compass navigation

The ROV can be used for inspection and monitoring of underwater structures, search and lrescue missions, study and monitoring of biological communities, seabed analysis, etc..

Published in Resources

VisorC3010

C3010 interface

Viewer Climate Change on the Spanish Coast (C3E)

Dates: 2009-2012.

Client: Spanish Climate Change Office (MAGRAMA)

Tasks: Analysis of variability and Climate Change in the present and future dynamics governing the coastal area in Spain and the related impacts, exposure and vulnerability. The results of this project are integrated into a GIS viewer (www.c3e.ihcantabria.com) to simulate impacts of climate change on the coast. C3SIM

Published in Resources

C3Sim is a simple application to assess the impacts due to changes in the Sea Level Rise (SLR) and incident waves on the different elements of the coast (coastal protection elements, coastlines, beaches, estuaries). To assess these impacts, the application uses semi-empirical formulations determining the future distribution point estimates of the variables involved. The input parameters used to run the C3Sim are obtained through the C3E project, with data from the entire Spanish coast. However, the user must provide data on the geometries which are to be analyzed. Each tab is a small description of the impact study and the formulation used.

c3simWeb 450,300

 

c3simWeb 450 300

You can access the application via C3sim following link:

www.c3sim.ihcantabria.com

This project is funded by the Spanish Secretary of State for Climate Change, Ministry of Environment and Rural and Marine Affairs (Reference No. 200800050084091)

 

Published in Resources

logo IHFOAMIHFOAM is a newly developed three-dimensional numerical two-phase flow solver specially designed to simulate coastal, offshore and hydraulic engineering processes. Its core is based on OpenFOAM®, a very advanced multiphysics model, widely used in the industry.

More Information on training courses

What makes IHFOAM 1.1 different from the rest of solvers is a wide collection of boundary conditions which handle wave generation and active absorption at the boundaries.

These specific boundary conditions allow to generate any type of wave in a 3D domain, from the most simple regular waves (Stokes I, II and V, streamfunction...) to complex, real and fully 3D irregular (random) directional sea states.

  Active wave absorption has been programmed to work simultaneously with the wave generation to absorb any incident waves on the boundaries. These features do not increase the computational cost noticeably, and there is no need to extend the numerical domain, as it occurs with relaxation zones. Moreover, they allow for longer and more stable simulations without increasing water level or agitation.

Currently the model can be applied to solve any impervious structures, both static and dynamic (floating structures). Some examples that have been simulated include: wave interaction with obstacles as vertical breakwaters, ships, offshore foundations, dam and spillway simulations, open channel flow...ihfoam1

  The simulations can be at laboratory or prototype scale, for which domains over 1 square kilometer have been calculated. Needless to say, a thorough validation with well-known laboratory tests has been carried out and is published in Coastal Engineering.

  IHFOAM 2.0 (still under development) can also solve two-phase flow within porous media by means of the VARANS equations. This new approach will extend the calculation range for any type of coastal structures (e.g. rubble mound breakwaters).

  Furthermore, new uses are being developed every day, as solving the interaction of the fluid with vegetation fields, considering either the average properties or the coupled movement of individual plants.

 

IHFOAMihfoam2
Published in Resources
logo IH logo UC logo FIHC laj